Association of coagulation factor XIII-A with Golgi proteins within monocyte-macrophages: implications for subcellular trafficking and secretion.

نویسندگان

  • Paul A Cordell
  • Benjamin T Kile
  • Kristina F Standeven
  • Emma C Josefsson
  • Richard J Pease
  • Peter J Grant
چکیده

Factor XIII-A (FXIII-A) is present in the cytosol of platelets, megakaryocytes, monocytes, osteoblasts, and macrophages and may be released from cells by a nonclassical pathway. We observed that plasma FXIII-A levels were unchanged in thrombocytopenic mice (Bcl-x(Plt20/Plt20) and Mpl(-/-)), which implicates nonclassical secretion from nucleated cells as the source of plasma FXIII-A. We, therefore, examined the intracellular targeting of FXIII-A in the THP-1 (monocyte/macrophage) cell line and in human monocyte-derived macrophages. Metabolic labeling of THP-1 cells did not show release of (35)S-FXIII-A either under basal conditions or when interleukin 1-beta was released in response to cell stress. However, immunofluorescence of THP-1 cells and primary macrophages showed that FXIII-A associated with podosomes and other structures adjacent to the plasma membrane, which also contain trans-Golgi network protein-46 and Golgi matrix protein-130 (GM130) but not the endoplasmic reticulum luminal protein, protein disulphide isomerase. Further, FXIII-A was present in GM130-positive intracellular vesicles that could mediate its transport, and in other contexts GM130 and its binding partner GRASP have been implicated in the delivery of nonclassically secreted proteins to the plasma membrane. Hence, this mechanism may precede FXIII-A release into the extracellular matrix from macrophages and its release into plasma from the cell type of origin.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Factor VII Gene Defects: Review of Functional Studies and Their Clinical Implications

Coagulation factors belong to a family of plasma glycosylated proteins that should be activated for appropriate blood coagulation. Congenital deficiencies of these factors cause inheritable hemorrhagic diseases. Factor VII (FVII) deficiency is a rare bleeding disorder with variable clinical symptoms. Various mutations have been identified throughout the F7 gene and can affect all the protein do...

متن کامل

Syntaxin 6 and Vti1b form a novel SNARE complex, which is up-regulated in activated macrophages to facilitate exocytosis of tumor necrosis Factor-alpha.

A key function of activated macrophages is to secrete proinflammatory cytokines such as TNFalpha; however, the intracellular pathway and machinery responsible for cytokine trafficking and secretion is largely undefined. Here we show that individual SNARE proteins involved in vesicle docking and fusion are regulated at both gene and protein expression upon stimulation with the bacterial cell wal...

متن کامل

Current understanding in diagnosis and management of factor XIII deficiency

Factor XIII or "fibrin-stabilizing factor," is a transglutaminase circulates in the blood circulation as a hetero tetramer with two catalytic A subunits and two carrier B subunits. This important coagulation factor has a crucial role in clotting cascade and produces strong covalent bonds between soluble formed fibrin monomers during coagulation. This stable cross linked fibrin strands are resis...

متن کامل

Rab6a/a’ Are Important Golgi Regulators of Pro-Inflammatory TNF Secretion in Macrophages

Lipopolysaccharide (LPS)-activated macrophages secrete pro-inflammatory cytokines, including tumor necrosis factor (TNF) to elicit innate immune responses. Secretion of these cytokines is also a major contributing factor in chronic inflammatory disease. In previous studies we have begun to elucidate the pathways and molecules that mediate the intracellular trafficking and secretion of TNF. Rab6...

متن کامل

Identification of intracellular factor XIII in human monocytes and macrophages.

Factor XIII is a blood protransglutaminase that is distributed in plasma and platelets. The extracellular and intracellular zymogenic forms differ in that the plasma zymogen contains A and B subunits, while the platelet zymogen has A subunits only. Both zymogens form the same enzyme. Erythrocytes, in contrast, contain a tissue transglutaminase that is distinct from Factor XIII. In this study ot...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Blood

دوره 115 13  شماره 

صفحات  -

تاریخ انتشار 2010